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a b s t r a c t 

Multi-attribute value theory (MAVT)-based recommender systems have been proposed for dealing with 

issues of existing recommender systems, such as the cold-start problem and changing preferences. How- 

ever, as we argue in this paper, existing MAVT-based methods for measuring attribute importance weights 

do not fit the shopping tasks for which recommender systems are typically used. These methods assume 

well-trained decision makers who are willing to invest time and cognitive effort, and who are familiar 

with the attributes describing the available alternatives and the ranges of these attribute levels. Yet, rec- 

ommender systems are most often used by consumers who are usually not familiar with the available 

attributes and ranges and who wish to save time and effort. Against this background, we develop a new 

method, based on a product configuration process, which is tailored to the characteristics of these partic- 

ular decision makers. We empirically compare our method to SWING, ranking-based conjoint analysis and 

TRADEOFF in a between-subjects laboratory experiment with 153 participants. Results indicate that our 

proposed method performs better than TRADEOFF and CONJOINT and at least as well as SWING in terms 

of recommendation accuracy, better than SWING and TRADEOFF and at least as well as CONJOINT in 

terms of cognitive load, and that participants were faster with our method than with any other method. 

We conclude that our method is a promising option to help support consumers’ decision processes in 

e-commerce shopping tasks. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

By providing consumers with access to great amounts of prod-

ct information, e-commerce has been driving research on con-

umer decision support systems. Recommender systems in partic-

lar have proven valuable in helping consumers make faster and

etter choices among large numbers of decision alternatives by

uggesting alternatives that ought to be considerable for a partic-

lar consumer ( Dellaert & Häubl, 2012 ). The intuition behind the

wo most common approaches, collaborative filtering and content-

ased recommender systems (e.g., Yue, Larson, & Hanjalic, 2014;

domavicius & Tuzhilin, 2005 ), is using past information about

onsumers’ purchase decisions to predict future decisions. This can

ead to low-quality recommendations when relevant data are miss-
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ng (i.e., for new customers and new products), and when con-

umer preferences change over time ( Ansari, Essegaier, & Kohli,

0 0 0; Scholz, Dorner, Franz, & Hinz, 2015 ). These problems are

roposed to be solved by a third approach, multi-attribute value

heory (MAVT)-based recommender systems ( Pu, Faltings, Chen,

hang, & Viappiani, 2011 ). Its core idea is predicting decisions

ased on consumer-specific value functions and attribute impor-

ance weights estimated at the time of purchase. 

Several methods for measuring attribute importance weights

ave been developed in recent decades ( Edwards & Barron, 1994;

ustajoki, Hämäläinen, & Salo, 2005; von Winterfeldt & Edwards,

986 ). How well they are suited for application in MAVT-based

ecommender systems in e-commerce contexts largely depends

n how many of the following characteristics they exhibit. For

ne, they need to present consumers with information about the

alid ranges of attribute levels. In order to estimate value func-

ions and attribute importance weights, MAVT-based recommender

ystems require consumer input. But consumers often have lit-

le knowledge about the alternatives available in a given purchase
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decision and are typically not aware of all the levels available for

a particular attribute ( Bettman, Johnson, Luce, & Payne, 1993; Xu

& Wyer, 2010 ), which adversely affects the reliability of weight

specifications. Hence the first characteristic, i.e., information about

valid attribute level ranges is necessary. The second characteris-

tic is closely related to the first one: consumer input ought to

be elicited based on evaluation of real alternatives. Evaluations of

real alternatives have been found to be more reliable and accu-

rate predictors for consumers’ attribute weights than evaluations

of hypothetical alternatives ( Ding, 2007; Ding, Grewal, & Liechty,

2005 ). 1 Consumers are usually not well-trained decision analysts

and might form wrong expectations faced with hypothetical op-

tions, i.e., they expect them to be available in the market, which

may also adversely affect the reliability of weight specifications. In

addition, evaluating real alternatives matches consumers’ expecta-

tions of a typical purchase decision process better ( Hauser, 2014 ),

and disconfirming these expectations is likely to give rise to neg-

ative perceptions of the recommender system. The third and fi-

nal characteristic of an ideal MAVT-based recommender system is

that consumers need to spend as little time and cognitive effort as

possible in giving their input. Positive perceptions of the recom-

mender systems by consumers influence their willingness to use

the system and are thus important from a managerial perspective.

None of the existing methods for measuring attribute importance

weights exhibit all three characteristics of an ideal MAVT-based

recommender system for e-commerce contexts; existing methods

are based on the evaluation of hypothetical alternatives and/or be-

come too cognitively demanding quickly. 

We address the three characteristics by using an attribute-based

product configurator ( Valenzuela, Dhar, & Zettelmeyer, 2009 ) as

the recommender system’s interface and developing an attribute

weight measurement method that takes into account the actions

of decision makers throughout the configuration of a desired prod-

uct. This type of product configurator is used on many companies’

websites, such as Audi, Citroen, Dell, Ducati, eShakti, Ford, Lenovo,

Mercedes Benz, Modern Tailor, MyMuesli, Shoes of Prey, Stevens

Bikes, or Volvo. As an illustrative example, let us consider a de-

cision maker who uses our recommender system to search for a

new digital camera. Our configuration-based system displays all

available attributes and ranges, but lets the decision maker select

only those levels of an attribute that are available given the se-

lected levels of other attributes. Price is then calculated accord-

ing to the selected attribute level combination. The decision maker

must weigh the configurable attributes and the price in order to

make a reliable decision about which levels to select. For instance,

if the decision maker selects maximum zoom factor of 30 x , it

might not be possible for her to also choose a camera of very

small size. Hence, if the decision maker wants to purchase a small

camera with a high optical zoom, she must thoroughly deliberate

whether to accord a higher attribute weight to optical zoom or to

camera size. If the size of the camera is more important for her,

she may choose a lower level for optical zoom in order to be able

to select a smaller size. Our proposed system uses the sequence in

which attribute level selections are made by a decision maker for

estimating attribute weights. The attribute weight estimation pro-

cedure we propose in this paper is based on two principles. First,

the better the selected level of a particular attribute, the higher is

this attribute’s weight. For example, changing the optical zoom se-

lection from 30 x to 18 x is interpreted as decreasing the attribute

weight for optical zoom. Second, the fewer changes to the selec-
1 Although closely related to the first characteristic, they are not identical. Esti- 

mation methods such as conjoint analyses may inform decision makers about the 

attribute ranges of real alternatives, but force decision makers to judge hypothetical 

alternatives that are systematically designed based on the attribute ranges of real 

alternatives. 

 

d  

p  

t  

(  
ion of a high attribute level throughout the recommendation pro-

ess and the later in the configuration process they are made, the

igher is the weight for that attribute compared to an attribute

ith a commensurate level. For instance, zoom will be accorded a

igher weight than photo resolution if the decision maker initially

elects the best levels for both attributes and then downgrades

hoto resolution twice (in order to be able to choose a better level

or another attribute) while keeping the selection for optical zoom

nchanged. 

Our proposed configuration-based recommender system meets

ll three characteristics of an ideal MAVT-based recommender sys-

em in e-commerce contexts as specified above. First, it does not

et decision makers select levels that are not available due to the

election of other attribute’s levels. This meets the first character-

stic – presenting information about available attribute ranges in

rder to obtain reliable estimates of attribute weights. Second, our

ystem does not require that decision makers evaluate hypotheti-

al products, which meets the second characteristic. Third, our sys-

em also incorporates behavioral principles from prospect theory

 Tversky & Kahneman, 1992 ), specifically the value function, and

s able to factor consumer behavior during configuration into at-

ribute weight measurement. We believe that a configuration pro-

ess is less time-consuming and cognitively less demanding than

he evaluation of hypothetical alternatives – especially for decision

akers who are not trained in using attribute weight elicitation

ethods. This addresses the third characteristic. 

We assess the performance of our configuration-based recom-

ender system in a laboratory experiment in which we com-

are the performance of our method to three established at-

ribute weight measurement methods. We chose three methods

hich, just like our proposed method, take into account that at-

ribute weight formation is dependent on the range of available at-

ribute levels ( Van Ittersum, Pennings, Wansink, & van Trijp, 2007 ):

WING, TRADEOFF, and ranking-based conjoint analysis. Finally, we

iscuss and empirically evaluate possible adaptations of our pro-

osed recommender system, specifically accounting for reference

oint and anchoring effects ( Tversky & Kahneman, 1974 ). 

We contribute to recent research on MAVT-based recommender

ystems and the ongoing research on attribute weight elicitation

ethods by providing a novel attribute weight elicitation method

hat is (i) tailored to support e-commerce purchase decisions, (ii)

rovides information about the available attribute level ranges in

n easily comprehensible and natural manner, and (iii) can be

asily integrated into retailing websites, many of which already

se product configuration systems. From a managerial point of

iew, our approach helps improving consumer decision support

nd sales processes. 

The paper is organized as follows. We briefly introduce multi-

ttribute value theory as the theoretical foundation of MAVT-

ased recommender systems in Section 2 . Section 3 presents ex-

sting research on MAVT-based recommender systems. We in-

roduce our novel attribute weighting method in Section 4 .

ection 5 presents an empirical comparison of our proposed

ethod to other methods that aim at measuring attribute impor-

ance weights. Section 6 concludes the paper with a discussion of

ossible adaptations of our method (see Supplementary material

or details), practical and research implications as well as sugges-

ions for future research. 

. Multi-attribute value theory 

Multiple criteria decision analysis (MCDA) is employed in many

isciplines, including management science, operations research,

sychology, and marketing. One of the most frequently applied

heories to MCDA problems is multi-attribute value theory (MAVT)

 Fishburn, 1967; Keeney & Raiffa, 1976; Wallenius et al., 2008 ).
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2 Another potential source of inaccuracy is, of course, consumers purchasing 

products as gifts or on behalf of other consumers ( Ansari et al., 20 0 0 ). 
3 If consumer A ’s preferences change over time, a collaborative filtering system 

will identify consumers that are similar to A based on A ’s historical and maybe ob- 

solete preferences. The preferences of these other consumers were similar in the 

past to consumer A ’s past preferences. But these past preferences are not good pre- 

dictors of consumer A ’s actual preferences and purchases. 
4 The three dimensions are determinance, salience and relevancy. Determinance 

reflects the importance of an attribute in specific choice situations. It is estimated 
AVT is based on the assumption that, in a decision situation, a

eal value function V exists which represents the preferences of

he decision maker such that the more preferable an alternative

s, the larger its numerical value. This function computes the value

f each decision alternative by aggregating its performance in all

ttributes i (e.g., price, color, the model of a car). Its general form

s represented by the equation 

 = f (v 1 (x 1 ) , . . . , v n (x n ) , w 1 , . . . , w n ) (1)

f is the multiple-attribute value function. x i represents a par-

icular level of attribute i . v i is a single-attribute value function

hat assigns a real value to x i and reflects the (subjective) pref-

rence of a particular decision maker. w i is the weight for the

ingle-attribute value. Single-attribute value functions are usually

ormalized, with the value of the worst level x ◦
i 

of attribute i

et to 0 and the value of the best level x ∗
i 

set to 1. The normal-

zed single-attribute value functions v i are then multiplied with at-

ribute weights w i ( Fischer, 1995; Pöyhönen & Hämäläinen, 2001 ).

he simplest form of Eq. (1) is additive: 

 = 

I ∑ 

i =1 

w i v i (x i ) (2)

Previous research has shown that additive models are robust as

ong as attribute weights are specified reliably ( Butler, Jia, & Dyer,

997; Dawes, 1979 ). 

Attribute weights w i are scaled from 0 to 1. The following con-

traints hold for two attributes i and i ′ if the value functions re-

urn values in [0, 1] and the attribute weights are normed in [0, 1]

 Keeney & Raiffa, 1976 ): 

0 = w i v i (x ◦i ) + w i ′ v i (x ◦i ′ ) 

0 ≤ w i = w i v i (x ∗i ) + w i ′ v i (x ◦i ′ ) ≤ 1 

 ≤ w i ′ = w i v i (x ◦i ) + w i ′ v i (x ∗i ′ ) ≤ 1 

I ∑ 

i =1 

w i = 1 (3) 

The largest weight is given to the attribute which contributes

ost to the overall value V . In other words, the weight of i rep-

esents the impact of attribute i on value V when the level of at-

ribute i is changed from x ◦
i 

to x ∗
i 
. The weight of attribute i rela-

ive to the weight of attribute i ′ represents the impact of i on V

ompared to the impact of i ′ on V , assuming that the levels of all

ttributes are commensurable ( v i (x i ) = v i ′ (x i ′ ) ∀ i � = i ′ ). 
Consider, for example, a decision between alternatives de-

cribed with two attributes A and B whose attribute values are

ormalized in [0, 1], i.e., each attribute’s best level has a value of

. If the best level of A improves the overall value of an alterna-

ive more than the best level of B , A has a larger attribute weight

han B . Hence, a decision maker who wants to decide between al-

ernatives X 1 = { x ◦
A 
, x ∗

B 
} and X 2 = { x ∗

A 
, x ◦

B 
} would choose alternative

 2 . 

There are numerous approaches for eliciting attribute weights,

ome of which have been used in MAVT-based recommender sys-

ems. The following section briefly discusses relevant attribute

eighting methods with respect to the three characteristics (pre-

enting information about available attribute ranges, consumer in-

ut should be based on the evaluation of really existing alterna-

ives, and demanding as little time and cognitive effort as possible)

e put forward in Section 1 . 
. Measuring attribute weights in MAVT-based recommender 

ystems 

Most recommender systems implement content-based or col-

aborative filtering techniques ( Adomavicius & Tuzhilin, 2005; Yue

t al., 2014 ). Content-based techniques recommend products simi-

ar to those a consumer has rated highly in the past. Collaborative

ltering techniques recommend products to a consumer based on

roduct ratings by other consumers who have similar tastes and

references. Both techniques frequently produce low-quality rec-

mmendations, which is due to two major issues 2 ( Ansari et al.,

0 0 0 ). First and most important is the cold-start problem ( Kim,

l-Saddik, & Jo, 2011 ). Traditional content-based and collaborative

ltering techniques cannot provide recommendations unless mul-

iple product ratings from a number of consumers, or at least from

he consumer currently using the system, are available. Neither can

hey provide recommendations for new or seldom rated products.

lthough many approaches have been proposed in recent research

o cope with the cold-start problem, there is no solution that can

redict the value of new products for an existing consumer and

he value of existing products for a new consumer without us-

ng additional data, such as explicit ratings ( Kim et al., 2011; Zig-

ris & Zhang, 2006 ), product taxonomies ( Weng, Xu, Li, & Nayak,

008 ), customer reviews ( Levi, Mokryn, Diot, & Taft, 2012 ), or so-

ial media data ( Forsati, Mahdavi, Shamsfard, & Sarwat, 2014; Yu

t al., 2014; Zhao et al., 2016 ). Since additional data are not avail-

ble in all contexts and for all consumers and products, the cold-

tart problem is still a challenge for content-based and collabora-

ive filtering techniques. Second, prior product ratings are histori-

al data which reveal past but not necessarily current preferences

 Pfeiffer & Scholz, 2013 ). A change of preferences of those con-

umers that demand a recommendation from a collaborative fil-

ering or a content-based system likely reduces recommendation

ccuracy 3 . These two issues prevent improvements in the recom-

endation quality of content-based and collaborative-filtering rec-

mmender systems even if these systems use efficient methods,

uch as matrix factorization ( Forsati et al., 2014 ). Neither of these

ssues arises in MAVT-based recommender systems. 

MAVT-based recommender systems estimate consumer-specific 

alues for all products of a given category at the time of purchase

 Huang, 2011; Pu et al., 2011; Scholz et al., 2015 ), based on individ-

al value functions and attribute weights. The first characteristic of

deal MAVT-based recommender systems, is therefore reliable esti-

ation of attribute weights. This is not an easy characteristic to

mplement in e-commerce contexts due to the nature of the typ-

cal decision maker in e-commerce: they often have little knowl-

dge about the alternatives available in a purchase decision and are

ypically not aware of the levels available for a particular attribute

 Bettman et al., 1993; Xu & Wyer, 2010 ). This adversely affects the

eliability of weight specifications, and requires careful choice of

n attribute weight elicitation method. Specifically, the first char-

cteristic implies that decision makers need to be presented with

nformation about differences between attribute levels and avail-

ble attribute level ranges. 

Existing attribute weight elicitation methods have been found

o actually measure three different dimensions of attribute im-

ortance ( Van Ittersum et al., 2007 ). 4 Since we require a method
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Table 1 

List of variables. 

Symbol Description 

i Attribute index 

t Configuration step index 

x i Level of attribute i 

w 

(raw ) 
i 

Unnormalized weight for attribute i 

w i Normalized weight for attribute i 

v i (x i ) Value function for attribute i 

s i , t Number of the selected level for attribute i at configuration step t 

τ i Number of totally available levels for attribute i 

e i Reference point for attribute i 

α, β , λ Scaling constants 

y  

t  

t  

(  

l  

a  

c  

W

 

w  

a  

i  

s  

(  

d  

l  

w  

t  

c  

m  

s  

o  

s  

s  

(  

2  

f  

c  

t

4

p

4  

 

a  

t  

a  
that takes differences between attribute levels and attribute level

ranges into account, methods capturing “determinance” clearly ap-

pear the most suitable ( Fischer, 1995 ). Among these methods are

conjoint analyses, TRADEOFF ( Keeney & Raiffa, 1976; Pöyhönen

& Hämäläinen, 2001 ), SWING ( von Winterfeldt & Edwards, 1986 )

and extensions (e.g., Mustajoki et al., 2005 ), and simple multi-

attribute ranking method such as SMARTS ( Edwards & Barron,

1994 ) and extensions (e.g., Mustajoki et al., 2005 ) that are based on

SWING. For use in MAVT-based recommender systems, especially

SWING ( Huang, 2011 ), ranking-based ( De Bruyn, Liechty, Huiz-

ingh, & Lilien, 2008 ) and choice-based conjoint analysis ( Pfeiffer

& Scholz, 2013 ) have been put forward. 

The first characteristic of ideal MAVT-based recommender sys-

tems (presenting information about available attribute ranges and

attribute level differences) is met by several existing methods, such

as TRADEOFF, SWING and conjoint analysis. These methods explic-

itly present information about the attribute ranges of real alterna-

tives. 

The second characteristic (consumer input should be based on

the evaluation of really existing alternatives) is not met by exist-

ing methods: they generally rely on the evaluation of hypothetical

alternatives. 5 This might be not an issue for decision makers who

are well-trained in using MAVT-based methods, but consumers are

usually unfamiliar with these methods. In addition, consumers are

likely to expect – based on their experience with other online

shopping situations – to be presented with real alternatives only.

Evaluating obviously unrealistic alternatives can lead to false ex-

pectations about product availability in the market and thus to

negative perceptions of the recommender system. 

The third characteristic of ideal MAVT-based recommender sys-

tems (demanding as little time and cognitive effort as possible) is

not met by existing methods. Specifying attribute weights clearly

can be very challenging with these methods, considering that in

a purchase situation many attributes may be relevant to the con-

sumer, and consumers are usually not well-trained in applying

methods such as TRADEOFF, SWING or conjoint analyses. At the

same time, prior research shows that a cognitively demanding

task can help decision makers to come to more stable preferences

( Hoeffler & Ariely, 1999 ), warning against oversimplification. Con-

sidering existing methods, however, we believe that there is scope

to find a better way to balance individual time and cognitive effort.

Taking TRADEOFF, each trade-off decision by itself is not very de-

manding – but it requires many such decisions to be made. 6 When

attributes have many levels or are continuously scaled, the decision

maker may find herself unable to make these trade-off decisions

( Eisenführ, Langer, & Weber, 2010 ). SWING, on the other hand, re-

quires only few decisions – but these demand high cognitive ca-

pabilities on part of the decision maker. In empirical studies, both

TRADEOFF and SWING showed statistically significant range sen-

sitivity ( Fischer, 1995 ). SWING exhibited high convergent validity

( Borcherding, Eppel, & Von Winterfeldt, 1991 ) but low external va-

lidity ( Borcherding et al., 1991 ), while TRADEOFF showed low in-

ternal consistency ( Borcherding et al., 1991 ). Finally, conjoint anal-
based on decision makers’ valuation of attribute level difference and hence depends 

strongly on the differences between attribute levels. The larger the difference of the 

valuation of the worst and the best level of an attribute, the more determinant this 

attribute becomes ( Fischer, 1995 ). Salience reflects the ease with which a particular 

attribute comes to a decision maker’s mind. Relevancy refers to the importance of 

attributes for a decision maker regardless of attribute level ranges ( Van Ittersum 

et al., 2007 ). 
5 The alternatives for evaluation in a conjoint task are systematically generated 

based on the range of available attribute levels. Alternatives composed of the best 

and worst available levels in multiple attributes are particularly unlikely to exist in 

reality. SWING, for example, starts with an alternative in which all attributes are 

set to their worst levels. 
6 Additionally, it requires knowing the attribute value functions. 

s  

a  

p  

t  

t

 

d  

d  

a  

d  

e  

l  

a  
sis has been applied to a wide range of research problems beyond

he scope of its original marketing applications ( Wyner, 1992 ), due

o its great flexibility in modeling interactions between attributes

 Akaah & Korgaonkar, 1983 ). However, larger numbers of attributes

ead to increasing numbers of attribute combinations to be evalu-

ted in conjoint analyses. In such cases, responses are likely to be-

ome unreliable due to respondent fatigue ( Pfeiffer & Scholz, 2013;

yner, 1992 ). 

To summarize, among existing methods for eliciting attribute

eights, those that refer to attribute determinance seem most

ppropriate. None of them, however, exhibit all characteristics of

deal MAVT-based recommender systems in e-commerce contexts

ince they (i) base the evaluation on hypothetical alternatives

characteristic 2 is not met) and/or (ii) fast become too cognitively

emanding (characteristic 3 is not met). As noted by prior research,

ack of knowledge about attribute level ranges leads to unreliable

eight specification (characteristic 1) and makes interpreting at-

ribute weights impossible (see Mistake 8 in Keeney, 2002 ). This

haracteristic can be satisfied by methods eliciting attribute deter-

inance by having the decision analyst, or in our case the decision

upport system, provide the relevant information. The importance

f designing recommender systems that use evaluations of real in-

tead of hypothetical alternatives and that require as little con-

umer input as possible has been highlighted by previous research

e.g., Ding et al., 2005; De Bruyn et al., 2008; Pfeiffer & Scholz,

013 ). In the following section, we will develop a novel method

or eliciting attribute weights that is specifically geared toward e-

ommerce shopping tasks and that exhibits all three characteris-

ics. We base our method on a product configuration process. 

. Adapting MAVT-based recommender systems to cognitive 

rocesses 

.1. Estimating attribute weights from product configuration processes

Recalling the definition of attribute weights (see Section 2 ), the

ttribute that contributes most to an alternative’s overall value is

he attribute with the largest weight – assuming that all attributes

re commensurable. Decision makers using a product configuration

ystem are more likely to select a better level for an attribute with

 large weight i than for an attribute with a small weight i ′ : im-

rovements in attribute i have a higher impact on the overall value

han commensurate improvements in attribute i ′ . Let us introduce

he following notation ( Table 1 ): 

In a configuration system, decision makers assemble their

esired product in T discrete configuration steps. In each step, a

ecision makers changes the level of exactly one attribute. Each

ttribute has τ i available levels. The worst possible selection is

efined as s ◦
i 

= 0 and the best possible selection as s ∗
i 

= τi − 1 . In

ach configuration step t , the decision maker changes the selected

evel of exactly one attribute i to s i,t ∈ [0 , τi − 1] . We compute

ttribute weights w 

(raw ) 
i 

as the sum over all normalized attribute
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Fig. 1. Exemplary configuration of an attribute. 

Table 2 

Exemplary configuration steps t i for resolution and zoom and 

the corresponding changes in price range and mean price. 

t 0 t 1 t 2 t 3 

Resolution 5 15 10 10 

Zoom 3 3 3 9 

Price 50–250 80–250 70–250 10 0–20 0 

Mean price 120 135 130 140 
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evel selections s i , t . 

 

(raw ) 
i 

= 

T ∑ 

t=0 

s i,t 
τi − 1 

(4) 

τ i is the number of totally available attribute levels. We divide

he selected level by the number of available levels minus 1 in or-

er to diminish a source of potential bias from attribute weight es-

imation: higher numbers of attribute levels lead to higher stated

ttribute weights ( Weber & Borcherding, 1993 ). 

The behavioral process underlying our proposed model for at-

ribute level aggregation has two general implications for attribute

eights. First, every attribute whose level remains set to the worst

evel throughout the configuration process has a weight of 0: it is

rrelevant for the decision maker. Second, an attribute is consid-

red the more important for a decision maker the more often she

elects its best level, or the longer it remains set to the best level,

uring configuration. 

To satisfy the constraints in Eq. (3) , attribute weights w 

(raw ) 
i 

are

ormalized in [0, 1]. 

 i = 

w 

(raw ) 
i ∑ I 

i =1 w 

(raw ) 
i 

(5) 

We discuss necessary adaptations of the configuration process

n the next subsection and thereafter present a numerical example

or our proposed attribute weight estimation. 

.2. Adapting the product configuration process for attribute weight 

stimation 

In product configuration systems, available combinations of at-

ribute levels are determined by the set of available products, i.e.,

he market situation. We need two conceptual adaptations – es-

imation of prices and determination of available attribute level

ombinations – when applying product configuration systems to

easuring attribute weights. 

Prices. Products are characterized by a set of attributes includ-

ng price (see Section 2 ). Price levels are not selected directly by

he decision maker in order to guarantee that attribute level se-

ections are made in trade-off to another attribute. The weight of

ttribute “price” is measured based on the expected attribute level

 ( x i , t ) instead of the selected level s i , t . The expected price level

 ( x i , t ) is the mean price of all products that meet the configura-

ion in round t (i.e., having attribute levels that are equal to or bet-

er than the attribute levels selected in the configuration system).

onsider, for example, a market where cameras cost between 100

nd 400 Euros, the mean price for a specific configuration is 200

uros and the cameras that meet this configuration cost between

50 and 250 Euros. Normalizing in [0, 1] gives an expected price

f E(x i ) = 0 . 667 and a price interval of [0.833, 0.5] for those cam-

ras that meet the given configuration. The unnormalized weight

or price equals the average expected price over all configuration

ounds T and is w 

(raw ) 
i,t 

= 0 . 667 in our example. 

Available attribute level combinations. For some attributes,

here might be almost as many levels as there are available

roducts, for instance the weight of a notebook or the mileage of

 car. Letting decision makers choose among hundreds of levels,

owever, is infeasible due to constraints on cognitive capacity ( von

itzsch & Weber, 1993 ). Forcing decision makers to choose among

ery finely-grained attribute levels likely leads to greater attribute

eight instability since decision makers usually have a range of

ttribute levels they consider acceptable ( Wang, Venkatesh, &

hatterjee, 2007 ). We therefore reduce the number of continuous

ttribute levels by aggregating them to intervals. For instance,

n interval level for the attribute “weight” might be “below 200

rams”. 
Product configuration systems operate on a database of prod-

cts that represents the entirety of available attribute level combi-

ations. Once a decision maker has selected a particular level s i of

ttribute i , the system (i) selects those products P whose level of i

quals s i and (ii) identifies those levels of all other attributes i ′ � = i

hat exist in P . Our system then assesses the best and worst avail-

ble attribute level ( x ∗
i ′ ,P and x ◦

i ′ ,P ) in P for each attribute i ′ . Levels

f i ′ outside the interval [ x ◦
i ′ ,P , x 

∗
i ′ ,P ] are marked as unavailable for

 i and disabled if the system is configured to present the relation-

hips between the attributes ( Fig. 1 ). 

Summary of configuration process. The final configuration

rocess is depicted in Fig. 2 . Decision makers start with a default

onfiguration in which the worst level x ◦
i 

is set for each attribute

 . In an iterative process, decision makers adapt the configuration

uch that it fits their attribute weights. Simultaneously, they learn

bout the attribute relations: if attribute levels become unavail-

ble for certain configurations, they are visually and functionally

isabled. This allows decision makers to become aware of the at-

ribute relations and to adjust their attribute weights gradually,

hanging their attribute level selections until they finally arrive at

table attribute weights. 

.3. Numerical example for estimating attribute weights with a 

roduct configuration system 

Let us assume a configuration system for cameras based on the

ttributes “photo resolution” and “zoom”. The price for each con-

gured product is computed based on cameras that are available

n the market and that have attribute levels equal to or better than

he selected attribute levels. 

Consumers can select one out of four resolution levels: 5, 10,

5, or 20 megapixel and one out of four zoom levels: 3, 6, 9, or

2 x . Hence, τi = 4 for both photo resolution and optical zoom. 

Let us also assume that cameras between 50 and 250 Euros

re available. A consumer starts the configuration process in t 0 ,

ith resolution and zoom set to the worst levels (5 megapixel

nd 3 x zoom) and may proceed with configuration steps as shown

n Table 2 . After each configuration step, the corresponding price

ange and the mean price are computed by the configuration sys-

em. Price ranges and mean prices are also shown in Table 2 . 

Each configuration step is translated into normalized selected

ttribute levels s i,t / (τi − 1) ( Table 3 ). Unnormalized weights w 

(raw ) 
i 

re the sum over all normalized selected attribute levels for each
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Fig. 2. Summary of configuration process. 

Table 3 

Computation of raw and normalized weights for the exemplary configuration in 

Table 2 . 

t 0 t 1 t 2 t 3 w 

(raw ) 
i 

w i 

s resolution , t 0 2 1 1 – –

s resolution,t / (τresolution − 1) 0.0 0 0 0.667 0.333 0.333 1.333 0.305 

s zoom , t 0 0 0 2 – –

s zoom,t / (τzoom − 1) 0.0 0 0 0.0 0 0 0.0 0 0 0.667 0.667 0.152 

s price , t 0.650 0.575 0.600 0.550 2.375 0.543 
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7 The KD 2 Lab is a professionally equipped and managed laboratory with sound- 

proofed computer cubicles that allowed us to control several potential confound- 

ing variables such as communication between the participants. Further information 

about the Lab are available at http://www.kd2lab.kit.edu/english/index.php . 
8 Screenshots of all treatments are presented in the Supplementary material. 
attribute; final weights w i are then normalized over all attributes’

unnormalized weights. 

For our example, the normalized weights w i in the last col-

umn in Table 3 indicate that price is the most important at-

tribute ( w price = 0 . 543 ), followed by resolution ( w resolution = 0 . 305 )

and zoom ( w zoom 

= 0 . 152 ). 

4.4. Computing single-attribute values 

For computing single-attribute product values, we use the S-

shaped value function v i as proposed by prospect theory ( Tversky

& Kahneman, 1992 ). The value function v i (x i , e i ) implements three

behavioral principles that determine its shape (loss aversion, refer-

ence point dependence, and diminishing sensitivity) and have been

supported by many empirical investigations (e.g., Tversky & Kahne-

man, 1991; 1992; Wu & Markle, 2008 ). The function’s gain and loss

parts are separated by the reference point e i which represents the

inflection point. The shape of the value function v i (x i , e i ) is given

as 

v i (x i , e i ) = G (x i , e i ) 
α + [ −λ( −L (x i , e i ) ) 

β
] (6)

where α, β and λ are scaling constants. α represents the deci-

sion maker’s risk aversion in the gain part of the value function;

β the risk aversion in the loss part. λ expresses the degree of

loss aversion. Values of λ > 1 indicate higher sensitivity towards

losses than gains. In a series of experiments, Tversky and Kahne-

man (1992) found α and β to be 0.88 and λ to be 2.25 on average.

The gain function G ( x i , e i ) computes the gain for a given at-

tribute level x i and the loss function L ( x i , e i ) respectively computes

the loss for a given attribute level x i ( Fan, Zhang, Chen, & Liu,

2013 ): 

G (x i , e i ) = max 

(
x i − e i 

max (e i , 1 − e i ) 
, 0 

)

L (x i , e i ) = min 

(
x i − e i 

max (e i , 1 − e i ) 
, 0 

)
(7)

Both the gain and the loss function only depend on the refer-

ence point e , i.e., the attribute level which the consumer desires
i 
o achieve ( Fan et al., 2013 ). Several methods for eliciting reference

oints have been proposed in recent research including direct elic-

tation ( Fan et al., 2013 ) and interactive procedures based on quad

rees ( Sun & Steuer, 1996 ). 

In the next section, we present the experiment we carried out

o evaluate our proposed method. 

. Empirical evaluation 

We conducted a laboratory experiment in the KD 

2 Lab at Karl-

ruhe Institute of Technology 7 in order to compare our proposed

ethod to state-of-the-art methods in terms of their ability to be

sed in e-commerce recommender systems. 

.1. Treatments 

We evaluated the performance of our proposed configuration-

ased method (CONF) by comparing it with SWING, TRADEOFF,

nd a ranking-based conjoint analysis (CONJOINT) – three meth-

ds that also measure attribute determinance and have been used

n recent MAVT-based recommender systems. All treatments im-

lemented a MAVT-based recommender system, each with a differ-

nt method for attribute weights measurement. 8 Reference point

licitation for each attribute (i.e., the attribute level perceived nei-

her as a loss nor as a gain) and product value computation (see

ections 2 and 4.4 ) were identical across treatments. 

CONF was implemented based on Eqs. (4) and ( 5 ). Each at-

ribute (except price) was represented by seven levels. Upon se-

ection of a particular level of an attribute, CONF immediately dis-

bled and crossed out other attributes’ levels that became unavail-

ble as a result. 

SWING started with informing participants that a camera with

he worst levels for all attributes was available and then asked

n which order participants would like to improve attributes from

heir worst to best levels. The most important attribute was

warded 100 points, and participants were then asked to assign

oints to the remaining attributes in order of their stated impor-

ances. The maximum number of points attributable to an attribute

s limited by the number of points given to the previous attribute

ess one. Attribute weights were finally normalized to add up to 1.

TRADEOFF was implemented as a two-step procedure. The first

tep was identical to the first step of SWING: ranking attributes

http://www.kd2lab.kit.edu/english/index.php
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Table 4 

Mean (standard deviation) of participant age, gender and experience and ANOVA results ( p -value) 

for differences between treatment groups. 

Variable CONF SWING TRADEOFF CONJOINT p -value 

Age 22.68 (2.47) 23.23 (2.44) 23.81 (5.50) 22.21 (3.03) 0.265 

Females 28.95% 25.00% 19.05% 30.30% 0.674 

Experience 3.14 (0.97) 3.29 (0.98) 3.13 (0.85) 2.89 (1.00) 0.371 

n 38 40 42 33 –
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Fig. 3. Summary of experimental procedure. 
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ccording to the order in which the participants would like to im-

rove them. The second step consisted of I(I − 1) / 2 camera com-

arison tasks for I attributes. In each task, participants were asked

o compare two hypothetical cameras (differing in two attributes

nly) and to adjust the level of the more important attribute such

hat they perceived the two cameras as equally attractive. Follow-

ng Pöyhönen and Hämäläinen (2001) , we asked the participants

o compare all pairs of attributes in order to have some degrees of

reedom when estimating attribute weights. 

CONJOINT implemented a ranking-based conjoint analysis in

hich participants were asked to rank twelve hypothetical prod-

cts. The products were generated such that the attribute level

atrix over all products was D-optimal. 9 Attribute weights were

omputed such that the difference between the ranking vector and

he normalized attribute level matrix, multiplied with the attribute

eights, was minimal. We used a least squares estimator to com-

ute optimal attribute weights. 

All treatments operate on the same product database, i.e., 160

igital cameras, described by photo resolution, optical zoom, cam-

ra size, video resolution, photosensitivity and price. Reference

oint elicitation for each attribute (i.e., the attribute level perceived

either as a loss nor as a gain) and product value computation

see Sections 2 and 4.4 ) are identical across treatments. Reference

oints are directly specified by the subjects as those attribute lev-

ls that the subjects desire to achieve. 

.2. Sample 

We invited 1500 undergraduate and graduate students of a

arge public university in Germany to take part in a labora-

ory experiment. 153 participated in and successfully completed

he evaluation experiment. We administered the treatments in a

etween-subjects design. 38 participants used the configuration-

ased recommender (CONF), 40 the recommender with SWING, 42

he recommender with TRADEOFF and 33 the recommender with

anking-based conjoint analysis (CONJOINT). Differences in treat-

ent group sizes are due to random assignment of participants to

reatments. Each participant was paid 10 Euros. Participants’ aver-

ge age was 23.03 ( SD = 3 . 67 ) and 25.49% of participants were fe-

ale. The participants took on average 18.92 minutes ( SD = 5 . 32 )

o complete the experiment. 

ANOVA testing indicated no significant differences between par-

icipants’ average age, proportion of females, and average experi-

nce between the four experimental groups (see Table 4 ). 

.3. Procedure 

The experiment consisted of three tasks ( Fig. 3 ). Participants

ere given a short introduction to a fictitious purchase situation

hat required them to purchase a digital camera for personal pur-

oses. They were instructed to use a virtual advisor (MAVT-based

ecommender system) to search for a new digital camera. 
9 A D-optimal design seeks to maximize the determinant of the attribute level 

atrix X times X T . 

r

In the first task, participants were asked to denote their at-

ribute reference points and assigned randomly to one of the four

reatments (CONF, SWING, TRADEOFF or CONJOINT). We elicited

articipants’ attribute weights using one of the MAVT-based rec-

mmender systems (CONF, SWING, TRADEOFF or CONJOINT) im-

lemented for this experiment. 

In the second task, participants were first asked to sort, in de-

cending order of their attractiveness, seven cameras drawn at ran-

om from the available set of 160 digital cameras. Following this,

hey were shown a randomly drawn sample of cameras and asked

o indicate which camera they preferred most. This holistic rating

as then used as benchmark to compare the different treatments’

ccuracy. 

In the third task, participants were asked to fill in a question-

aire on their perceptions of the system (treatment), which we

ater used to assess the systems’ cognitive demands and cognitive

t to the experimental task. More specifically, the questionnaire

easured the constructs cognitive load (NASA-TLX scale, Hart &

taveland, 1988 ), perceived difficulty ( Dellaert & Dabholkar, 2009 ),

t to task (based on Van Der Land, Schouten, Feldberg, Van Den

ooff, & Huysman, 2013 ), and preference insights (based on Xu,

enbasat, & Cenfetelli, 2014 ), and contained questions about prod-

ct experience, age and gender. 10 

.4. Analysis and results 

We estimated the attribute weights for each of the four treat-

ents. Table 5 shows that, on average, (i) participants in the CON-

OINT treatment had significantly larger weights for video resolu-

ion than participants in any other treatment, (ii) price was consid-

red rather unimportant by participants across all treatments, and

iii) photo resolution was very important according to the weights

easured by CONF, SWING and CONJOINT. 

The similarity between attribute weights across treatments was

ompared with Pearson correlation coefficients ( Table 6 ). Results

ndicate that (i) TRADEOFF attribute weights were very different

rom those elicited with the other methods and (ii) CONF attribute

eights were rather similar to those of SWING. 

As we argued in Section 3 , a suitable method for eliciting at-

ribute weights ought to (i) present information about available

ttribute ranges, (ii) base consumer input on the evaluation of re-

lly existing alternatives, and (iii) demand as little time and cogni-

ive effort as possible. We believe that meeting these characteris-

ics will improve recommendation accuracy and perceptions of the

ecommender system. 
10 The complete questionnaire is presented in the Supplementary material. 
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Table 5 

Means (standard deviations) of attribute importance weights (in %). 

Resolution Zoom Size Video Photosensitivity Price 

CONF 29.9 (8.3) 22.7 (8.2) 18.4 (11.3) 8.3 (9.9) 10.9 (11.0) 9.8 (6.9) 

SWING 32.7 (21.8) 12.1 (10.9) 8.5 (11.6) 13.8 (16.3) 24.7 (23.4) 8.2 (12.6) 

TRADEOFF 15.9 (10.2) 14.6 (11.5) 20.6 (13.5) 12.9 (8.8) 19.5 (17.0) 16.5 (11.4) 

CONJOINT 19.6 (16.9) 13.7 (13.9) 10.4 (10.2) 30.4 (21.0) 15.5 (15.3) 10.5 (12.5) 

Table 6 

Correlations between the attribute weights estimated 

with different methods. 

SWING TRADEOFF CONJOINT 

CONF 0.49 0.01 −0 .17 

SWING 0.01 0 .31 

TRADEOFF −0 .68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Probability that the preferred product occurs in the top- n recommendations. 
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Cognitive demand is measured as cognitive load (by using the

NASA-TLX questionnaire) and perceived difficulty . In addition, we

examine how suitable (fit to task) and helpful (preference insight)

participants consider the recommender systems. Recommendation

accuracy is measured as sorting accuracy and ranking accuracy , i.e.,

based on a holistic rating of real products. E-commerce consumers

are usually interested in speeding up the process of exploring and

evaluating (generally large numbers of) available products. Con-

sumers who are not willing to evaluate all available products need

only compare the top-ranked products and select one alternative

holistically. Hence, recommender systems are commonly evaluated

based on holistic product ratings ( Herlocker, Konstan, Terveen, &

Riedl, 2004; Scholz et al., 2015; Xiao & Benbasat, 2007 ). 

The correlation between the estimated and the actual ranks

(Columns 3 and 4 in Table 7 ) reflects how accurately a method

predicts the holistic ranks of all (displayed) products; the rank of

the preferred product (Columns 5 and 6 in Table 7 ) indicates which

rank was predicted for the most preferred product. 11 

Product ranks were predicted based on product values (in de-

scending order), which in turn were computed as the weighted

sum of attribute values ( Eq. (2) ), using reference points e i (as

specified by the participants in task 1, Fig. 3 ) to compute single-

attribute values ( Eq. (6) ). 

To compare the different methods’ performance with regard to

sorting accuracy, we computed Spearman’s rank correlation coef-

ficients between participants’ rankings and the predicted ranks of

the seven randomly chosen cameras for each treatment. We then

transformed the coefficients into Fisher z -values ( Silver & Dunlap,

1987 ) and performed a linear regression to determine whether

treatments differed significantly in their sorting accuracy. Differ-

ences in ranking accuracy were determined with an ordered logit

regression; CONF was the baseline in both regressions. Table 7 sug-

gests that CONF performed significantly better than TRADEOFF and

CONJOINT. We also compared the time required to complete the

treatment tasks with a Gamma regression. Participants in the CONF

treatment were significantly (and substantially) faster than in the

other treatments (Columns 7 and 8 in Table 7 ). 

That CONF and SWING exhibit similar recommendation accu-

racy fits the results of the correlation analysis of attribute weights

( Table 6 ) that indicate similar weights. Fig. 4 further illustrates

these results. The probability that the preferred product of a par-

ticipant appears in a list of the top-N cameras ( x -axis in Fig. 4 ) is

clearly higher for CONF and SWING than for TRADEOFF and CON-

JOINT. Since consumers consider only a few (typically the top-N)
11 Box plots on the correlation between the estimated and the actual ranks and 

on the rank of the preferred product are given in the Supplementary material. 

b

e

s

c

lternatives when shopping online and even fewer in the presence

f a recommender system ( Häubl & Trifts, 20 0 0 ), this is an impor-

ant accuracy measure. Even if the list only contains 2 cameras, the

robability that one of them is the preferred camera exceeds 70%

or CONF and 65% for SWING – as opposed to less than 40% for

RADEOFF and CONJOINT. On average, the probability that the pre-

erred camera contained in the list is 7.4% higher when using CONF

ather than SWING (TRADEOFF: 28.7%, CONJOINT: 26.7%). 

Participants reported the lowest cognitive load and perceived

ifficulty in CONF (Columns 2–5 in Table 8 ), but the difference to

ONJOINT was not significant. Participant perceptions of fit to task

imilarly indicate that CONF fitted best, followed by CONJOINT (no

ignificant difference), with significant differences to both SWING

nd TRADEOFF (Columns 6 and 7 in Table 8 ). Participants were also

sked whether the treatment helped them gain better insight into

heir product preferences. CONF was, on average, rated better than

ll other methods, but not significantly so (Columns 8 and 9 in

able 8 ). 12 

The correlations between the self-reported measures suggest

hat better cognitive fit of the recommender system to the ex-

erimental task reduced cognitive load: perceived fit to task was

egatively correlated with perceived cognitive load ( p = 0 . 010 ) and

erceived difficulty ( p < 0.001) across and within treatments. This

nterpretation is supported by the fact that the time required by

articipants for the treatment task was not correlated with per-

eived cognitive load ( p = 0 . 294 ), perceived difficulty ( p = 0 . 120 ),

r perceived fit to task ( p = 0 . 494 ). 

The more accurately the treatments predicted participants’

roduct rankings, the higher were participants’ perceived prefer-

nce insights ( p = 0 . 020 ). This is interesting, considering that par-

icipants received no feedback on recommender system accuracy.

roviding information about the available attribute level ranges,

s the CONF treatment did, apparently helped consumers obtain
12 Box plots on all scales are presented in the Supplementary material. Differences 

etween the treatments in terms of cognitive load, difficulty, fit to task, and pref- 

rence insights were tested in linear regressions with robust standard errors. All 

cales have been found to be reliable as indicated by Cronbach’s alpha of 0.71 for 

ognitive load, 0.87 for difficulty, 0.77 for fit to task and 0.93 for preference insights. 
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Table 7 

Comparison between the actual and the predicted ranks (as correlation and rank of the preferred 

product) and time of treatments (means and standard deviations). 

n Correlation (in %) Rank of the preferred product Time (in second) 

Mean SD Mean SD Mean SD 

CONF 38 57.3 33.6 2.2 1.7 261.2 109.0 

SWING 40 48.5 38.8 2.6 1.9 349.6 ∗∗∗ 124.7 

TRADEOFF 42 11.5 ∗∗∗ 54.8 3.9 ∗∗∗ 2.2 519.2 ∗∗∗ 163.9 

CONJOINT 33 25.2 ∗ 56.5 3.8 ∗∗ 2.3 382.5 ∗∗∗ 156.2 

∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001 

Table 8 

Treatment evaluation by participants (means and standard deviations). 

Cognitive load Difficulty Fit to task Preference insights 

Mean SD Mean SD Mean SD Mean SD 

CONF 7.68 2.65 2.41 1.14 4.90 1.07 4.61 1.63 

SWING 9.23 ∗ 2.73 3.18 ∗ 1.36 4.22 ∗∗ 0.79 4.04 1.72 

TRADEOFF 9.50 ∗∗ 3.26 3.70 ∗∗∗ 1.45 4.17 ∗∗∗ 1.04 3.99 1.77 

CONJOINT 8.81 2.43 2.84 1.23 4.68 0.92 4.32 1.69 

∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001 
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nsights into their preferences, and ultimately resulted in a higher

ecommendation accuracy. 13 

. Discussion 

We argue that MAVT-based recommender systems using at-

ribute weighting methods, such as SWING or conjoint analysis, are

ot perfectly suited for application in contexts like e-commerce

here decision makers are not willing or able to evaluate hypo-

hetical alternatives and are not willing or able to spend a lot of

ime and cognitive effort on the task. In such contexts, attribute

eights estimated with existing MAVT-based methods can be un-

eliable. 

Our aim was to develop a MAVT-based recommender system

ith an attribute weight measurement method that supports such

ecision situations. At the core of our method is a configuration

rocess in which consumers learn about the range of available at-

ribute levels in a natural manner. Attribute weights are computed

ased on the behavior of the decision maker during the configura-

ion process. 

Our empirical investigation supports our reasoning in a number

f ways. First, recommendation accuracy was higher with our pro-

osed approach than with CONJOINT or TRADEOFF, indicating more

eliable attribute weight estimates. SWING provided similar results

s our approach with respect to attribute weights and accuracy.

econd, cognitive load and perceived difficulty were lower than

ith TRADEOFF or SWING, indicating that attribute-level compar-

sons were easier with our proposed approach. The suggestion that

his difference may be due to the more “natural” exploration of

he attribute level ranges that are available is supported by the

act that better fit to task was associated with lower cognitive load.

hile lower cognitive load does not necessarily lead to higher de-

ision quality ( Hoeffler & Ariely, 1999 ), we may state that in our

ase, cognitive load was not correlated to recommendation qual-

ty: the configuration-based system performed as well as SWING

ut was cognitively less demanding. 

From a managerial point of view, our method enables compa-

ies who already use a product configuration system on their web-

ites to obtain better insights into their customers’ preferences and

o use this information for improving market shares and customer
13 Recall that the CONF treatment provided the information about attribute rela- 

ions by means of the configuration process: once a level of a particular attribute 

as selected, the system disabled unavailable levels of other attributes. 

(

c

egment estimates. Implementing our proposed attribute weight

licitation method is relatively easy and probably would not re-

uire major alterations to configurator interfaces. If only market

hare estimation were the goal, it would not even be necessary to

easure reference points 14 and fit value functions, which would

ake the interaction with the configuration system even simpler. 

Our theoretical contribution is threefold: (1) We provide a

et of three characteristics that attribute weight elicitation meth-

ds should exhibit when used in e-commerce contexts, especially

n MAVT-based recommender systems. (2) We design a method

hat exhibits all three characteristics and empirically compare this

ethod to existing methods that do not meet all of these charac-

eristics. Our empirical evaluation provides evidence that our pro-

osed method and thus the derived characteristics help to improve

AVT-based recommender systems. (3) We provide a method that

ranslates consumers’ interactions with a configuration system into

ttribute weights. This method relies on both MAVT and findings

rom research on behavioral decision making. 

In summary, our results suggest that measuring consumers’ at-

ribute weights with a configuration process that provides infor-

ation about the relationships among product attributes in a nat-

ral way seems to fit consumers’ exploratory-evaluative decision

ontext very well, with comparatively low cognitive load, little re-

uired time and high recommendation accuracy. 

Clearly, this study has limitations that need to be addressed in

uture research. First, there are a number of possible adaptations

o our configuration-based approach that may improve its recom-

endation accuracy further. We investigated two possible adap-

ations in a supplementary online experiment (see Supplemen-

ary material for details). The first adaptation refers to the ques-

ion whether results can be improved by using a different refer-

nce point ( Tversky & Kahneman, 1974 ) for attribute level nor-

alization. In the model presented in this paper (see Eq. (5) in

ection 4.1 ), we assume that decision makers evaluate the at-

ractiveness of attribute levels compared to the best overall level

n this attribute. In the supplementary experiment, we tested

hether using the best level available in a specific configuration

s a reference point improves accuracy. Our results show no im-

rovement. 
14 Existing configurators like Lenovo’s use up to three pre-configured alternatives 

for one chosen notebook) that the customer can use as a reference point in her 

onfiguration. 
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The second adaptation refers to the question whether accu-

racy can be increased by accounting for possible anchoring effects

( Tversky & Kahneman, 1974 ) during configuration. Anchoring re-

flects decision makers’ “excess reliance on the starting point and

insufficient adjustment for subsequently considered information”

( Wansink, Kent, and Hoch, 1998 , p. 72). We defined a sequence

weighting function in order to test whether anchoring occurs, and

if so, whether decision makers rely more heavily on early or late

configurations. Our results indicate that for smaller numbers of at-

tribute levels, the best accuracy was obtained for weighting late

configuration steps more heavily than early steps. For higher num-

bers of attribute levels, decision makers simultaneously adjusted

their attribute weights and configuration while learning about the

availability of different attribute combination, and accuracy could

not be improved by weighting the configuration sequence. 

Second, our study focused on a product with (at least) ordi-

nally scaled attributes. Since many decision objects have important

properties that are nominally scaled, our proposed configuration-

based method ought to be extended to such cases. This extension

might, however, not be trivial when nominally scaled attributes

have many levels. 

Third, the results of our experiment indicate that better pref-

erence insights might be associated with higher recommendation

accuracy, and that learning about the attribute level ranges be-

tween attributes in a configuration-based setting improves prefer-

ence insights. Enriching other attribute weight measurement meth-

ods with this information and examining the effects on preference

insights and recommendation accuracy thus provides another in-

teresting avenue for future research. 

Fourth, we implemented SWING and TRADEOFF as proposed in

existing studies. There is, however, space for improvements of both

methods. SWING, for example, starts with an alternative with the

worst levels for all attributes. Since such an alternative is very un-

likely to exist, an improvement might be to start with an alterna-

tive with medium levels for all attributes. Lahtinen and Hämäläi-

nen (2016) show that TRADEOFF weights (as a variant of an even

swaps decision analysis) might be path dependent and biased.

They suggest a procedure to cope with this problem which pro-

vides an interesting extension to improve TRADEOFF performance.

However, the effort associated with this method is comparable to

the original TRADEOFF method and it is still based on hypotheti-

cal alternatives, which may make its application in an e-commerce

context difficult. We used I(I − 1) / 2 trade-off tasks in order to bet-

ter able to cope with inconsistent evaluations by decision makers

( Pöyhönen & Hämäläinen, 2001 ). The absolute minimum of tasks

required to estimate attribute weights for I attributes is I − 1 . Im-

proving TRADEOFF by (i) incorporating the procedure proposed by

Lahtinen and Hämäläinen (2016) and (ii) reducing the number of

trade-off tasks provides an interesting starting point for further re-

search. 

Fifth, we designed and tested our proposed attribute weighting

method in a specific e-commerce context. Future research could

adapt our method to other application areas in which decision

makers need to explore (partly) unknown attribute level ranges

(e.g., insurance selection), one of the major advantages of our

method being its natural presentation of the attribute level ranges.

Finally, the experiment was carried out in a laboratory setting.

Although this was necessary for establishing a sufficient level of

control to ensure internal validity, it had the drawback that we

could only observe decision makers’ stated preferences and thus

their (purchase) intentions rather than actual choices. Also, our

sample was not drawn to establish representativeness with respect

to any part of the consumer population. In future studies, the ex-

ternal validity of our proposed method ought to be tested and

compared to that of SWING, TRADEOFF, and CONJOINT, for instance

in field experiments. 
upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.ejor.2016.09.057. 
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